Response of different levels of Zinc and methods of boron application on growth, yield and protein content of Wheat (Triticum aestivum L.)

Lal Babu Singh\(^1\), Rajkumar Yadav\(^2\) and Thomas Abraham\(^1\)

\(^1\)Department of Agronomy, Allahabad Agricultural Institute- Deemed University, Allahabad-211007, India
\(^2\)Department of Agronomy, Chandra Bhanu Gupta Agriculture College, Bakshi Ka Talab, Lucknow-227201, India

*e-mail: ryavad108@gmail.com

(Received: February 01, 2015; Revised received: June 14, 2015; Accepted: June 16, 2015)

Abstract: A field experiment was carried out to evaluate the effect of zinc levels and methods of application of boron on the growth, yield and protein content of wheat (Triticum aestivum L.) during the winter (Rabi) season in two consecutive years, i.e. 2003-04 and 2004-05 at the Allahabad agricultural Institute – Deemed University, Allahabad. Texture of the soil was sandy loam, slightly alkaline in nature, nitrogen (61.70, 68.62 kg/ha), phosphorus (10.48, 15.45 kg/ha) and potash (188.23, 220.03 kg/ha). The treatments comprised three levels of zinc (0, 3.5 and 7 kg ha\(^{-1}\)) through zinc sulphate and four methods of application of boron (0, soil application @ 0.5 kg ha\(^{-1}\), foliar spray @ 0.5 kg ha\(^{-1}\) at 45 and 60 days after sowing and soil application @ 0.25 kg ha\(^{-1}\) + foliar spray @ 0.25 kg ha\(^{-1}\) at 45, 60 DAS) as borax, making 12 treatment combinations, each replicated three times. On the basis of the findings of the experiment, zinc @ 7 kg ha\(^{-1}\), soil application of boron @ 0.25 kg ha\(^{-1}\) + foliar application of boron @ 0.25 kg ha\(^{-1}\) and their combination (i.e., 7 kg ha\(^{-1}\) zinc + soil application of boron @ 0.25 kg ha\(^{-1}\) + foliar application of boron @ 0.25 kg ha\(^{-1}\)) was found superior over all other treatments in relation to plant height, dry weight, effective tillers yield and yield attributes and protein content in grains, of wheat crop.

Key words: Wheat, Zinc, Boron, Zinc sulphate, Borax, Foliar spray.

Introduction

Wheat is cultivated in most of parts of the world. It is staple diet for majority of the population in both developed and developing countries. Wheat compares well with other important cereals in the nutritive value. It contains more protein than other cereals. The nutritive values of wheat are starch (60-68%), protein (8-15%), fat, sugar, cellulose, minerals, vitamins, etc (Singh, 2000). Wheat is known to respond to the application of several macro and micronutrients during its growing stages and results in enhanced output in terms of yield. Micronutrients comprising zinc, copper, iron, manganese, boron, molybdenum and chlorine are though required by plants in much smaller amounts, yet are as essential as the major nutrients such as nitrogen, phosphorus, potassium etc. According to recent, deficiency of zinc is widespread and covers about 48% area in the country (Chibba and Nayyar, 1988). Zinc was one of the first micronutrients, essentiality of which for plant growth has been confirmed. Zinc also plays a role in nucleic acid and protein synthesis and helps in the utilization of phosphorus and nitrogen, as well as in seed formation. Zinc is an important element for terrestrial life since it is required as either a structural component or reaction site in numerous proteins. Zinc deficiency in wheat resulted in sever reduction in growth, grain yield and seedling vigour, and enhances sensitivity of plants to pathogens. Decrease in grain quality is another typical consequence of zinc deficiency in wheat (Graham and Wilch, 1996).

Boron is also one of the seven essential micronutrients required for the normal growth of most of the cereal, fruit and vegetable crops. It is the only non-metal among the seven plant micronutrients. Since its discovery as an essential trace element, the importance of boron as an agricultural chemical has grown very rapidly. The requirement of boron varies greatly between crops and cultivars and between soil and climatic conditions. Boron is unique among the essential mineral micronutrients because it is the only element that is normally present in soil solution as non-ionized molecule over the pH range suitable for plant growth. Boron is involved in the transport of sugars across cell membranes and in synthesis of cell wall material. It influences transportation through the control of sugar and starch formation. It also influences cell development and elongation (Bennett, 1993). Boron affects carbohydrates metabolism and plays a role in amino acid formation and synthesis of proteins (Tisdale et al., 1985). Deficiency of boron can also cause reduction in crop yield and inferior crop quality. Boron is an essential plant food element, having a specific role in growth and development of plants. Intensive agriculture involving exhaustive high yielding varieties of rice and wheat has led to heavy withdrawal of nutrients from the soil. Imbalanced use of chemical fertilizers by the farmers has deteriorated soil health. The widely practiced rice-wheat system in northern India is one such instance, where sustainability is under threat. However, it is the most productive and profitable system. To curb this trend of declining yield, there is a need to adopt the concept of INM (Abraham and Lal, 2004). Micronutrients such as zinc, boron manganese, Molybdenum, copper, iron and chlorine are important components of INM and may help to recover the soil health in the cropping system.

Material and Methods

The experiment was laid out in randomized block design (3x4 factorial), having 3 levels of zinc (0, 3.5 and 7 kg ha\(^{-1}\)) through zinc sulphate and four methods of application of boron (0, soil application @ 0.5 kg ha\(^{-1}\), foliar spray @ 0.5 kg ha\(^{-1}\) at 45 and 60 days after sowing, and soil application @ 0.25 kg ha\(^{-1}\) + foliar spray @ 0.25 kg ha\(^{-1}\) at 45, 60 day after sowing) through borax; making 12 treatment combinations, each replicated 3 times.
Soil of the experimental field was sandy loam in texture, alkaline in nature, nitrogen (61.70, 68.62 kg/ha), phosphorus (10.48, 15.45 kg/ha) and potash (188.23, 220.03 kg/ha). pH of the soil was 7.3 and 7.2, organic carbon 0.72% and 0.76%; available zinc 1.185 and 1.189 ppm; available boron 0.015 and 0.019 ppm, during first and second year of experimentation, respectively. Soil samples were collected from plot of each treatment of research field at initial as well as final stage of the experimentation to the 15cm. The dried soil samples were subjected to various analysis. Soil pH and electrical conductivity were estimated respectively (Jackson, 1967). The available nitrogen phosphorus, potassium and organic carbon content were estimated with the methods as described by Subbaiah and Asija (1956) by alkaline potassium permanganate estimation of available phosphorus, Jackson,(1967) using Olsen’s method, potassium was determined by Flame photometer method (Jackson, 1973) and organic carbon by rapid titration (Walkley and Black, 1965), respectively.

Results and Discussion

Yield and yield attributes such as plant height, number of effective tillers/m², plant dry weight, grain yield, straw yield and protein content in grains were significantly affected by the treatment as well as their interaction (Table-1 and 2). The data pertaining to plant height was recorded at 70 and 90 DAS. The effect of levels of zinc and methods of boron application on plant height was found to be significant at 90 DAS, during both the years of experimentation. Treatment combination Z₁ B₁ (i.e., zinc @ 7 kg ha⁻¹ and application of boron @ 0.25 kg ha⁻¹ in soil + foliar spray @ 0.25 kg ha⁻¹) recorded the maximum pant height (88.09 cm in 1st year 90.47 cm in 2nd year), which was followed by and significantly higher than the treatment combination Z₂ B₁, (i.e., zinc @ 7 kg ha⁻¹ and foliar spray of boron @ 0.5 kg ha⁻¹) with values of 86.88 and 87.89 cm in 1st Year and in 2nd Year, respectively, and the minimum (82.13 cm in 2003-04 and 82.88 cm in 2nd year) was recorded with control plot (Z₀ B₀). With the increase in levels of zinc and change in methods of application of boron from soil application to foliar application and then to soil application + foliar application, the plant height gradually increased, which might be attributable to greater photosynthetic activity and chlorophyll synthesis due to zinc and boron fertilization resulting into better vegetative growth. Saelet et al. (1990) and Shaaban et al. (2004) also reported similar results.

Number of leaves per plant recorded at 70 and 90 DAS. The effect levels of zinc and methods of application of boron significantly affected the number of leaves per plant at 70 and 90 DAS during both the years of experimentation. In these intervals treatment combination Z₁ B₁ (i.e., zinc @ 7 kg ha⁻¹ and application of boron @ 0.25 kg ha⁻¹ in soil + foliar spray @ 0.25 kg ha⁻¹) recorded the maximum number of leaves per plant (19.11, 19.11 at 70 DAS and 22.44, 22.44 at 90 DAS and 1st Year and in 2nd Year, respectively), which was significantly higher than the treatment combination Z₂ B₁ (i.e., zinc @ 7 kg ha⁻¹ and foliar spray of boron @ 0.5 kg ha⁻¹), (18.22, 18.44 at 70 DAS and 21.22 21.89 at 90 DAS 1st Year and in 2nd Year, respectively) in both the years. The treatment combinations Z₁ B₁ was statistically at par with Z₂ B₁ at 90 DAS in 2nd year the minimum was recorded with control plot (Z₀ B₀).

At successive stages of growth, the number of leaves per plant gradually increase with the increase in levels of zinc and change in methods of application of boron from soil application to foliar application and then to soil application + foliar application, which might be attributable to greater photosynthetic activity and chlorophyll synthesis due to zinc and boron fertilization resulting into better vegetative growth. These results are in conformity with the findings of Magomendraiev et al. (1993). The effect of zinc levels and different methods of boron application had a significant effect on plant dry weight at 70 and 90 DAS during both the years. Maximum dry weight per plant (8.33 g, 6.33 g at 70 DAS and 15.11 g, 14.93 g at 90 DAS in 1st Year and in 2nd Year, respectively) was recorded with control plot (Z₀ B₀) and Shaaban and Salet et al. (1990) recorded the maximum (86.88 and 87.89 cm in 1st year) during both the years. Treatment combination Z₂ B₂ was significantly higher than Z₁ B₁, which was statistically at par with Z₂ B₂ in first year. The minimum dry weight per plant (6.33 g, 6.33 g at 70 DAS and 15.11 g, 14.93 g at 90 DAS in 1st Year and in 2nd Year, respectively) was recorded with control plot (Z₀ B₀).

There was increased dry weight at successive stages of growth, with the increase in levels of zinc and boron application. The increased tillering due to boron supplementation might have resulted in significant increase in plant dry weight. These results are in conformity with the findings reported by Mitra and Jana (1991) and Wongmo et al. (2004). Crop growth rate worked out at 70 and 90 DAS under different treatments at successive stage of growth the effect of Zinc levels and different methods of boron application was significant only at 90 DAS during both the years of experimentation. At 90 DAS in 2003-04, treatment combination Z₁ B₁, (i.e., zinc @ 7 kg ha⁻¹ and application of boron @ 0.25 kg ha⁻¹ in soil + foliar spray @ 0.25 kg ha⁻¹) recorded significantly maximum crop growth rate (41.91) followed by Z₂ B₁ (i.e., zinc @ 7 kg ha⁻¹ and soil application of boron 0.5 kg ha⁻¹ (39.42) and the minimum remained with control plot (Z₀ B₀). Z₂ B₂ was statistically at par with Z₁ B₁. In the second year of experimentation 2nd year treatment combination Z₁ B₁, (i.e., zinc @ 7 kg ha⁻¹ and foliar spray of boron @ 0.5 kg ha⁻¹) recorded significantly maximum crop growth rate (41.28) followed by Z₂ B₁ (i.e., zinc @ 7 kg ha⁻¹ and application of boron @ 0.25 kg ha⁻¹ in soil + foliar spray @ 0.25 kg ha⁻¹) 40.97 at 90 DAS. The minimum crop growth rate was with control plot (Z₀ B₀). Rerkasem et al. (1993) observed that response to external boron supply has resulted in to higher crop growth.

Relative growth rate worked out at 70 and 90 DAS at successive stage of growth. The significant affect only 90 DAS in both the year of experimentation. At 90 DAS in 1st Year, treatment combinations Z₁ B₁, Z₁ B₂, Z₁ B₃, Z₂ B₁, Z₂ B₂, Z₂ B₃, Z₃ B₁, Z₃ B₂, Z₃ B₃, and Z₀ B₀ recorded the maximum relative growth rate followed by Z₁ B₂, Z₁ B₃, Z₂ B₁, Z₂ B₃, Z₃ B₁, Z₃ B₂, and Z₃ B₃. However, most of the treatment combinations were significantly higher than control (Z₀ B₀). Response to external boron supply might have resulted into higher crop growth rate and relative growth rate. Rerkasem et al. (1993) also observed similar results. Plants treated with combination, Z₂ B₂ (i.e., 7 kg ha⁻¹ zinc + soil application of boron @ 0.25 kg ha⁻¹ + foliar application of boron @ 0.25 kg ha⁻¹) produced the maximum number of effective tiller/m² (364.40 and 362.80 in 1st Year and in 2nd Year, respectively) during both the years of experimentation. The minimum remained with Z₃ B₃ (control plot). However, Z₂ B₂ was statistically at par with Z₂ B₂ in both the years.
Table-1: Effect of different levels of zinc and methods of boron application on plant height, number of leaves, plant dry weight and crop growth rate of wheat (Triticum aestivum)

<table>
<thead>
<tr>
<th>Treatment Combinations</th>
<th>70 DAS</th>
<th>90 DAS</th>
<th>10.56</th>
<th>0.018</th>
<th>12.98</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>1</sub></td>
<td>58.72</td>
<td>82.13</td>
<td>60.64</td>
<td>82.78</td>
<td>15.33</td>
</tr>
<tr>
<td>T<sub>2</sub></td>
<td>59.67</td>
<td>83.64</td>
<td>60.67</td>
<td>82.90</td>
<td>15.44</td>
</tr>
<tr>
<td>T<sub>3</sub></td>
<td>59.94</td>
<td>83.39</td>
<td>60.91</td>
<td>83.37</td>
<td>15.66</td>
</tr>
<tr>
<td>T<sub>4</sub></td>
<td>60.28</td>
<td>84.46</td>
<td>60.94</td>
<td>84.33</td>
<td>16.00</td>
</tr>
<tr>
<td>T<sub>5</sub></td>
<td>61.13</td>
<td>84.65</td>
<td>61.79</td>
<td>85.03</td>
<td>16.55</td>
</tr>
<tr>
<td>T<sub>6</sub></td>
<td>61.22</td>
<td>85.37</td>
<td>61.79</td>
<td>85.03</td>
<td>16.77</td>
</tr>
<tr>
<td>T<sub>7</sub></td>
<td>61.43</td>
<td>85.44</td>
<td>62.06</td>
<td>85.48</td>
<td>17.33</td>
</tr>
<tr>
<td>T<sub>8</sub></td>
<td>61.61</td>
<td>85.67</td>
<td>62.64</td>
<td>86.15</td>
<td>17.33</td>
</tr>
<tr>
<td>T<sub>9</sub></td>
<td>62.05</td>
<td>86.88</td>
<td>63.26</td>
<td>87.89</td>
<td>18.22</td>
</tr>
<tr>
<td>T<sub>10</sub></td>
<td>62.16</td>
<td>88.09</td>
<td>64.15</td>
<td>90.47</td>
<td>19.11</td>
</tr>
</tbody>
</table>

Increase of zinc levels and application of boron, half in the soil and half through foliar spray, resulted into higher number of effective tillers per m². This trend might be due to the fact that zinc and boron are active ingredients of energy metabolism pathway of plants. It plays a major role in photosynthesis and is a structural constituent of many intermediaries in the process of photosynthesis and carbohydrate metabolism. Thus, the increase in levels of zinc and boron application method (Soil + foliar application) led to greater availability of zinc and boron to the plants, which increased their metabolic efficiency and ultimately led to increased vegetative growth and number of effective tillers. Mitra and Jana (1991) reported similar results. The effect of zinc and boron as seen in treatment combination T₇-Z₄ (zinc @ 7 kg ha⁻¹ and application of boron @ 0.25 kg ha⁻¹ in soil + foliar spray @ 0.25 kg ha⁻¹) registered maximum grain yield (50.83 and 51.00 q ha⁻¹ in 1st Year and 2nd Year respectively), and was significantly higher than Z₃B₁ (i.e., zinc @ 7 kg ha⁻¹ and foliar spray of boron @ 0.5 kg ha⁻¹) (49.17 and 49.33 q ha⁻¹ in 1st Year and 2nd Year respectively). The minimum (38.67 and 38.83 q ha⁻¹ in 1st Year and in 2nd Year, respectively) was recorded with control plot (Z₀B₀). The grain yield with Z₄B₀ was 19.66% and 19.55% higher than the control plot in 1st Year and in 2nd Year, respectively. All the treatment combinations showed better results than the control plot (Z₀B₀).

The highest grain yield obtained with boron through soil + foliar application, as compared to other methods of boron application, was due to the fact that split application including foliar feeding resulted in higher boron uptake. Boron enhances the uptake and translocation of sugars and is implicated in carbohydrate metabolism resulting in increased number of grains spike⁻¹ and weight of 1000 seeds, ultimately leading to increased vegetative growth and number of effective tillers.
giving higher grain yield. Chatterjee et al. (1980), Mishra et al. (1989), Roy and Pradhan (1994) and Bhattacharya and Singh Roy (2002) also reported similar results. The increase in grain yield with increasing dose of zinc and boron application (soil + foliar) might be due to synergistic action of zinc and boron. These results are in conformity with the findings reported by EL-Fouly et al. (1990), Mithra and Jana (1991), Sahay et al. (1993) and Torun et al. (2001). Treatment combination Zn $@ 0.25$ kg ha$^{-1}$ soil + foliar spray @ 0.25 kg ha$^{-1}$ gave significantly maximum straw yield (75.00 and 75.50 in 1st Year and in 2nd Year, respectively) followed by Zn $@ 0.5$ kg ha$^{-1}$ in 1st Year and in 2nd Year, However, Zn $@ 0.25$ kg ha$^{-1}$ was statistically at par with Zn $@ 0.5$ kg ha$^{-1}$. The minimum was recorded with control plot (Zn $@ 0$ kg ha$^{-1}$). The straw yield with Zn $@ 0.25$ and 36.52% higher than the control in 1st Year and in 2nd Year, respectively.

The increase in straw yield with increasing dose of zinc and boron application (soil + foliar) might be due to increased photosynthetic efficiency and carbohydrate metabolism resulting in superior vegetative growth and yield attributes. Similar results were also reported by Sahay et al. (1993), Yaduvanshi (1995), Roy and Pradhan (1994) and Islam et al. (1998). Best quality of grains with maximum protein content (13.24 and 13.15% in 1st Year and in 2nd Year, respectively) was produced by treatment combination of zinc 7 kg ha$^{-1}$ + soil application of boron $@ 0.25$ kg ha$^{-1}$ + foliar application of boron $@ 0.25$ kg ha$^{-1}$ (Zn $@ 0.25$ kg ha$^{-1}$). The minimum remained with Zn $@ 0.25$ kg ha$^{-1}$ (control plot) in both the years of study. Increase in zinc dose led to concomitant increase in protein content in wheat during both the years of cultivation. The vital role played by zinc in synthesis of protein and indole acetic acid, chlorophyll formation and in auxin metabolism may be assigned for increased protein content in wheat grains. Hossain et al. (1994) Paliwal et al. (2000), Firouzabadi et al. (1993), Yaduvanshi (1995), Roy and Pradhan (1994) and Bhattacharya and Singh Roy (1998).

